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Abstract. In an earlier paper[RRH92], we presented a new technique for
the SPMD parallelization of programs that use dynamic data structures.
Our approach is based on migrating the thread of computation to the
processor that owns the data, and annotating the program with futures
to introduce parallelism. We have implemented this approach for the
Intel iPSC/860. This paper reports on our implementation, called Olden,
and presents some early performance results from a series of non-trivial
benchmarks.

1 Introduction

Compiling for distributed memory machines has been a very active area of re-
search in recent years; particularly in the area of programs that use arrays as
their primary data structure and loops as their primary control structure. Such
programs tend to have the property that the arrays can be partitioned into rel-
atively independent pieces and therefore operations performed on these pieces
can proceed in parallel. This property of scientific programs has been exploited
in vectorizing compilers [ABCt88, AK87, PW86, Wol89]. More recently, this
property has been used by researchers investigating methods for automatically
generating parallel programs for SPMD (Single-Program, Multiple-Data) execu-
tion on distributed memory machines.* To date, this research has largely ignored
the question of how to compile programs that use trees as their primary data
structures and recursion as their primary control structure. In part, this is be-
cause there are fundamental problems with trying to apply the techniques, such
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as runtime resolution, currently used to produce SPMD programs for scientific
programs, to programs that use dynamic data structures. In the case of scientific
programs, the array data structures are statically allocated, statically mapped,
and directly addressable. Dynamic data structures, on the other hand, are dy-
namically allocated, dynamically mapped, and must be recursively traversed to
be addressable. These properties of dynamic data structures preclude the use
of simple local tests for ownership, and therefore make the runtime resolution
model ineffective.

One exception is a recent paper by Gupta [Gup92] that suggests a mechanism
for introducing global names for each element of a data structure at runtime to
allow an approach similar to runtime resolution. In his approach, a name, which
is determined by the node’s position in the structure, is assigned to each node
as it is added to a data structure. This name is then registered with the other
processors. Once a processor has a name for the nodes in a data structure, it
can traverse the structure without further communication. A problem 1is that
this new way of naming dynamic data structures leads to restrictions on how
they may be used. For example, because the name of a node is determined by its
position, only one node can be added to a structure at a time. Another problem
is that node names may have to be reassigned when a new node is introduced.
For example, consider a list in which a node’s name is simply its position in the
list. If a node is added to the front of the list, the rest of the list’s nodes will
have to be renamed to reflect their change in position. These problem arise from
trying to retrofit runtime resolution, a method designed for statically allocated,
directly addressable structures, to handle dynamic data structures, which are
neither directly addressable nor statically allocated.

In a previous paper [RRH92], we presented an execution model with as-
sociated compiler techniques for parallelizing programs that use dynamic data
structures using an SPMD approach. We have since implemented our execution
model on the Intel iPSC/860. This paper starts with a review of our proposed
execution model and compiler techniques. This review is followed by a descrip-
tion of our implementation, which we call Olden, and a discussion of our early
experiences with using Olden on a series of non-trivial benchmarks.

2 Data-driven Execution

In this section, we review our technique for executing SPMD programs on hi-
erarchical data structures.® This technique consists of two mechanisms: thread
migration and thread splitting.

In our SPMD model, each processor has an identical copy of the program, as
well as a local stack that is used to store procedure arguments, local variables,
and return addresses. In addition to these local stacks, there is a distributed
heap. We view a heap address as consisting of a pair of a processor name and
a local address. This information is encoded as a single address. For simplicity

® We suggest that readers unfamiliar with our proposed execution model consult our
original paper[RRH92], which contains an in-depth discussion of the model.



we assume that there is no global data. We also require that programs do not
take the address of stack-allocated objects; thus there are no pointers into the
processor stacks.

The basic programming model may be summarized as follows. The program-
mer writes a normal sequential program except for a slight difference in how
dynamic data structures are allocated. In our programming model, the program-
mer explicitly chooses a particular strategy to map the dynamic data structures
over the distributed heap. This mapping is achieved by including a processor
number in each allocation request. A typical choice of mapping is to build a
tree such that the sub-trees at some fixed depth are equally distributed over all
processors. Appendix A contains a sample allocation routine.

2.1 Thread Migration — Exploiting Locality

This section briefly describes our mechanism for migrating a single thread of
control through a set of processors based on the placement of heap-allocated
data. When a thread executing on Processor P attempts to access a word residing
on Processor @), the thread is migrated from P to . Full thread migration entails
sending the current program counter, the thread’s stack, and the current contents
of the registers to (). Processor @) then sets up its stack, loads the registers, and
resumes execution of the thread at the access that caused the migration. Notice
that because the stack is sent with the thread, stack references are always local
and cannot cause a migration.

Full thread migration is potentially quite expensive, since the thread’s entire
stack is included in the message. To make thread migration affordable, we send
only the portion of the thread’s state that is necessary for the current procedure
to complete execution: namely, the registers, program counter, and current stack
frame. When it 1s time to return from the procedure, it is necessary to return
control to Processor P, since it has the stack frame of the caller. To accomplish
this, @) sets up a stack frame for a special return stub to be used in place of
the return to the caller. This frame holds the return address and the return
frame pointer for the currently executing function. The stub code migrates the
thread of computation back to P by sending a message that contains the return
address, the return frame pointer, and the contents of the registers. Processor
P then completes the procedure return by restarting the thread at the return
address. Note that the stack frame is not returned because it is no longer needed.

2.2 Thread Splitting — Introducing Parallelism

While the migration scheme provides a mechanism for operating on distributed
data, it does not provide a mechanism for extracting parallelism from the com-
putation. When a thread migrates from Processor P to @, P is left idle. In this
section, we describe a mechanism for introducing parallelism. Our approach is
to use compiler transformations to introduce continuation capturing operations
at key points in the program. When a thread migrates from P to @), Proces-
sor P can start executing one of the captured continuations. The natural place



to capture continuations is at procedure calls, since the return linkage is effec-
tively a continuation; this provides a fairly inexpensive mechanism for labeling
work that can be done in parallel. This capturing technique effectively splits the
thread of execution into many pieces that can be executed out of order, thus
the introduction of continuation capturing must be based on an analysis of the
program (see Section 3).

Our continuation capturing mechanism is essentially a variant of the future
mechanism found in many parallel Lisps [Hal85]. In the traditional Lisp context,
the expression (future e) is an annotation to the system that says that e can be
evaluated in parallel with its context. The result of this evaluation is a future cell
that serves as a synchronization point between the child thread that is evaluating
e and the parent thread. If the parent attempts to read the value of the future
cell, called a touch, before the child is finished, then the parent blocks. When
the child thread finishes evaluating e, it puts the result in the cell and restarts
any blocked threads.

Our view of futures, which is influenced by the lazy task creation scheme
of Mohr, Krantz, and Halstead [MKH91], is to save the future call’s context
(return continuation) on a work list and to evaluate the future’s body directly.®
If a migration occurs in the execution of the body, then we grab a continuation
from the work list and start executing it; this is called future stealing.

3 Compiler Issues

In order to generate a data-driven SPMD program automatically, one needs com-
piler analysis to determine which sub-computations may be executed in parallel
safely, and where it is best to place the futurecall and touch operations.

To support this analysis, we can build upon the techniques previously pro-
posed in the context of parallelizing imperative programs with recursive data
structures [Hen90, HN90, HHN92], and the CURARE restructuring compiler for
Lisp [LH88a, LH88b, Lar89]. In both these cases, the objective is to analyze the
program to determine which computations refer to disjoint pieces of the hierar-
chical data structure, and then to use this information to insert parallel function
calls or futures automatically.

For our purposes, we plan to build on the path matriz analysis [Hen90, HN90],
an interprocedural analysis designed to determine statically if the data structures
are indeed tree-like, and to approximate the relationships between different parts
of the data structure. A typical analysis provides information about the disjoint-
ness of sub-trees, or the non-circularity of lists. Based on information available
from this analysis, we have defined the appropriate tests to determine when
it is safe to introduce futures. For a typical divide-and-conquer type recursive
procedure, we say that the procedure consists of pre-computation, followed by
the recursive calls implementing the conquer part, followed by post-computation.

6 This is also similar to the workcrews paradigm proposed by Roberts and Vandecoorde

[RV89].



Our analysis must be used to: (1) determine if it is safe to execute the vari-
ous sub-computations for the conquer step in parallel, (2) determine if the pre-
computation can be overlapped with the conquer step, and (3) place the touches
in the latest possible position to ensure maximum concurrency. Qur previous
paper describes this in more detail [RRH92].

4 A Simple Example

To make the ideas of the previous two sections more concrete, we present a simple
example. Figure 1(a) gives the C code for a prototypical divide-and-conquer
program. Using the analyses outlined in Section 3, a compiler would generate
the semantically equivalent program annotated with futures give in Figure 1(b).
In the annotated version, the left recursive call to TreeAdd has been replaced by
a futurecall,” and the result is not demanded until after the right recursive
call.

To understand what this means in terms of the program’s execution, consider
the case where a tree node tp (on processor P) has a left child ¢g (on processor
(). When TreeAdd, executing on P, is recursively called on tg, it attempts to
fetch the left child of ¢, which causes a trap to the runtime system. This will
cause the thread of control to migrate to processor ), where it can continue
executing. Meanwhile, execution resumes on processor P at the return point
of the futurecall. Assuming that the right subtree of {p is on processor P,
execution of the stolen future continues until it attempts to touch the future cell
associated with the call on #g. At this point, execution must wait for the thread
of control to return from processor (.

5 Implementation

We have implemented a prototype of our execution model at Princeton on a
16 node Intel iPSC/860 hypercube. The input to the system is a C program
annotated with futurecalls and touches. Qur system consists of a runtime
system and a compiler for the annotated C code; the compiler also generates
tests for pointer locality.

5.1 The Runtime System

Figure 2 provides an overview of the control structure of the runtime system.
The main procedure is MsgDispatch, which is responsible for assigning work
to a processor when it becomes idle. Captured futures are given first priority,
then messages from other processors in the order received. The runtime system
processes four different events: migrate on reference, migrate on return, steal
future, and suspend touch. We discuss futures in the next section, so we focus
on migration in this section.

" Note that using a futurecall on the right subtree is not cost effective, since there
is very little computation between the return from TreeAdd and where the result is
needed. Also note that the fetching of t’s right field cannot cause a migration.



typedef struct tree {

int val;
struct tree *left, #*right;
} tree;

int TreeAdd (tree *t)

{
if (t == NULL)
return 0;
else
return (TreeAdd(t->left) + TreeAdd(t->right) + t->val);
}

(a) Original code

int TreeAdd (tree *t)

{
if (t == NULL)
return 0;
else {
tree *t_left;
future_cell f_left;
int sum_right;
t_left = t->left; /* this can cause a migration */
f_left = futurecall (TreeAdd, t_left);
sum_right = TreeAdd (t->right);
return (touch(f_left) + sum_right + t->val);
}
}

(b) Annotated code

Fig. 1. TreeAdd code

Migrate on Reference As previously mentioned, a thread will migrate if it
attempts to dereference a non-local pointer. The code to test the pointer and
call Migrate, if necessary, is inserted by the compiler. Migrate packages the
necessary data and sends it to the appropriate processor. A migration message
contains the current stack frame, the argument build area of the caller, the
contents of callee save registers, and some bookkeeping information: the name
of the processor that originated the current function, an address to continue
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Fig. 2. The Runtime System

execution, the frame pointer, the pointer causing the migration, the return value
size, the framesize, and the argument build area size. We allocate extra space
in stack frame for the callee save registers and bookkeeping information, which
allows us to construct messages in situ, reducing the cost of migrations. Once
the migration is complete, the sending processor calls MsgDispatch to assign a
new task.

A simple optimization is added to avoid a chain of trivial returns in the
case that a thread migrates several times during the course of executing a sin-
gle function. Migrate examines the current return address of the function to
determine whether it points to the return stub. If so, the original return ad-
dress, frame pointer, and node id are pulled from the stub’s frame and passed as
part of the migration message. This is analogous to a tail-call optimization and
is similar to the tail forwarding optimization used in the Concurrent Smalltalk
compiler[HCD89]. A similar optimization is that if a migrated procedure exits on
the same processor as it began (for example, it migrated from P to Q then back
to P), the return message is not sent, rather ReturnMsgRecv is called directly.

When MsgDispatch selects an incoming migration message as the next task,
it transfers control to CallStub to process the message. CallStub allocates space
for a return message, in which it stores the framesize, return value size, and
frame pointer from the migration message. Then space on the stack is allocated
for the frame, the argument build area and a stub frame. The callee-save register
values from the message are loaded, and the pointers to the return area and the
argument build area are adjusted (if they exist). The return address stored in
the frame is changed to retaddr, the stub return procedure. Finally, the pointer
causing the migration, the frame pointer and the program counter are loaded,
and execution resumes on the new processor. When this procedure exits, it will
go to the procedure retaddr. This code stores the values of the callee-save



registers in the return message, and sends the message to the processor that
began execution of the procedure.

Migrate on Return When MsgDispatch selects a return message as the high-
est priority task, it calls ReturnMsgRecv, which loads the contents of the callee-
save registers from the message, and deactivates the frame of the procedure that
migrated. It then resumes execution at the return address of the procedure that
migrated. Note that since the procedure exited on the remote processor before
the migrate on return, the state of the callee-save registers will be the same as
before the procedure was called.

5.2 The Compiler

The compiler is a port of lee [Fra9l, FH91], an ANSI C compiler, to the i860, with
modifications to handle our execution model. lec does not have an optimizer.

Testing Memory References As previously mentioned, a process will migrate
on a reference if it attempts to dereference a non-local heap pointer. In our
implementation, heap pointers consist of a tag indicating the processor where
the data resides and a local address, so it is necessary to check the tag on
each heap pointer dereference.® lee has a command-line option for generating
null pointer checks on all pointer dereferences. We modified this mechanism to
generate code that examines the tag to see if the pointer is local, conditionally
calls Migrate, and removes the tag to reveal the local address.

The additional overhead of testing each pointer dereference is three integer
instructions and a conditional branch on the i1860. This overhead can be re-
duced by observing that only the first reference in a string of references to the
same pointer can cause a migration. In the TreeAdd example, only the reference
t->left can cause a migration. All subsequent references are guaranteed to be
local.® The Olden compiler provides an annotation, local, which allows allows
us to take advantage of this observation. The expression local(t) removes the
pointer tag and forces a migration if ¢ is non-local. Subsequent references use
the resulting local pointer.

A simple compiler optimization can take advantage of this construct. A
pointer dereference is aligned with another pointer dereference if it is dominated
by that reference and if there are no intervening references to other pointers. A
dominating reference, that is the first reference in the string, can be tested using
local. The local address that results can be used by the aligned references. The
code in Figure 3 shows the result of applying this optimization to the TreeAdd
example. Note that the deferences of local_t require no special handling.

® Note that the address translation hardware could be used to detect non-local refer-
ences [AL91].

® Note that this observation relies on the fact that function calls always return to the
original processor on return.



int TreeAdd (tree *t)
{
if (t == NULL)
return 0;
else {
tree *t_left, *local_t;
future_cell f_left;
int sum_right;

local_t = local(t); /* this can cause a migration */
t_left local_t->left;
f_left = futurecall (TreeAdd, t_left);

sum_right = TreeAdd (local_t->right);

return (touch(f_left) + sum_right + local_t->val);

Fig. 3. TreeAdd code using local

Compiling futurecall Asnoted previously, future calls allow the introduction
of parallelism. We use two data structures to support future calls: future cells
and the future stack, which serves as work list. A future cell can be in one of
four states:

Empty Thisis the initial state and contains the information necessary to restart
the parent.

Stolen This is the state when the parent continuation has been stolen.

Waiting This is the state when the parent continuation has been stolen and
subsequently touched the future. It contains the continuation of the blocked
thread (Note: when inserting futures, the compiler insures that no future can
be touched by more than one thread).

Full This is the final state of a future cell, and contains the result of the com-
putation.

Figure 4 gives the allowable state transitions for a future cell. The future stack
is allocated as part of the processor’s stack. In particular, this means that no
migrations may occur between a future call and its corresponding touch.

When the backend (unoptimized) encounters a futurecall annotation, it
generates in-line code to store the continuation, which consists of the callee-
save registers, the frame pointer, the state of the future cell (Empty), and the
program counter. This information is stored in the future cell. Then the call
is generated. After the call, code is generated in-line to store the return value
in the future cell, and check the state of the future. If it is Empty, the cell is
popped from the stack, and execution continues.



Fig. 4. Future cell state transitions

In the case that the cell is not Empty, (that is, the function or one of its
descendants migrated), we test to see whether the future is Stolen or Waiting.
If it is Stolen, then MsgDispatch is called to assign work to the processor. If it
is Waiting, there must have been a touch on this future cell. In Section 5.3, we
describe how to resume this thread of computation.

As described, the overhead of future calls is quite large. Ideally, we would like
to avoid having to save all of the callee-save registers, and instead just save those
that are live using an interprocedural analysis to determine the subset of live
registers. But, even this would be a duplication, since the callee-save registers
that are used by the futurecall will be stored upon entry to the function. We
can do better by exploiting the fact that MsgDispatch gives stealing futures the
highest priority. As a result, a descendant of the future call must have been
executing immediately before the steal. Therefore, the state of the callee-save
registers may be restored by a process called register unwinding, which involves
executing the restores of callee save registers for each procedure in the call chain
from the user code function last executing to the function called in the future
call.

To implement register unwinding, we generate a callee-save restore sequence
for each procedure, and store its address at each call site in the procedure. Then,
when stealing a future, we traverse the list of frame pointers to the frame that
contains the future cell, executing each callee-save restore sequence as we go.
Since the address of a restore sequence is stored at the appropriate call site, it
can be obtained by reading a word at a constant offset from the return address
stored in the frame.

A second optimization is to eliminate the necessity of storing the state
Empty in the future cell. The return address for a future call is initially set
to the sequence of instructions for an Empty future cell. When a future cell is
stolen, the return address of the body of the future is modified to point to code
which will test for Stolen or Waiting, and perform the appropriate function.

Given these optimizations, the overhead of a future call on the 1860 is only
seven instructions (four stores, two integer instructions and one load) in the
expected case where the future cell is not stolen.



5.3 Compiling touch

The touch annotation generates in-line code to synchronize on the state of the
future cell. If the state is Full, then the procedure continues, otherwise the
library routine Suspend is called. Suspend stores the values of the callee-save
registers and the program counter in the future cell, marks the cell as Waiting,
and calls MsgDispatch to assign work to the processor. When the future call
returns and finds the cell marked Waiting, it loads the registers and program
counter from the suspended cell, and resumes execution of the procedure.

5.4 Stack Management

In the discussion thus far, we have glossed over certain details related to stack
management. When a future is stolen, the portion of the stack between the
frame belonging to the stolen continuation and the frame that migrated must be
preserved for when the migrated thread returns. The stolen continuation may
allocate new stack frames, overwriting the frames of the migrated thread. To
avoid this problem, we adopt a simplification of a single stack technique for
multiple environments by Bobrow and Wegbreit [BW73].

Their method maintains counters for the number of uses and frame exten-
sions, which arise from the use of backtracking, for each frame. On entry, a basic
frame and extension are allocated contiguously at the end of the stack, with the
counters set to 1. The use of a coroutine, for example, would cause a copy of
the frame extension to be made so the returns may go to different continuation
points. On exit from an access module, the appropriate extension is deleted, and
the basic frame is freed if no other extension references it (that is, the extension
count is 1). The end of stack pointer is then adjusted appropriately. When con-
trol returns to an extension, if active frames exist between this extension and the
end of the stack, it is moved to the end to allow it to allocate new frames. Thus,
the stack is split into various segments. Compaction is performed as necessary to
prevent stack overflow, as the stack will have a tendency to be ever increasing.

Since our model does not require more than one extension per frame, we can
simplify the method and reduce the overhead on function calls and returns. We
maintain a single stack, called a simplified spaghetti stack, that contains frames
from the continuations interleaved.!® In a simplified spaghetti stack, new stack
frames are allocated off the global stack pointer. We maintain the invariant
that the global stack pointer always marks the end of a live frame. The exit
routine for a frame is split into two parts: deactivation and deallocation. If a
procedure whose frame is in the middle of the stack exits, it is deactivated by
marking it as garbage. If the frame is at the end of the stack, the global stack
pointer is adjusted, thus deactivating and deallocating the frame simultaneously.
Additionally, the stack pointer is adjusted to the end of the live frame nearest
the end of the stack, which deallocates garbage frames.

10° A similar method, called a meshed stack, was developed by Hogen and Loogen in
the context of parallel implementations of functional or logic languages [HL93].



To implement deactivation, one word of memory in each frame, splink, is
reserved for stack management information. If the frame is live, then a null
pointer is stored at splink. Otherwise, splink contains a pointer to the beginning
of the frame. By placing this word at the end of each frame, these pointers form
linked lists of garbage frames. To maintain the invariant, after deallocating a
live frame at the end of the stack, it is merely necessary to traverse the list until
reaching a null pointer, and then set the global stack pointer to the location
containing the null pointer.

Figure b provides an example of this process. Assume that initially the pro-
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Fig. 5. Simplified Spaghetti Stack — simple case

cedure F is executing. F calls G, a new frame is allocated at the end of the stack.
Notice that there are live frames between F and the end of the stack that belong
to another thread of execution. When G exits, since the preceding frame (e)
is live, the stack returns to the initial state. Figure 6 provides a more complex
example. Again, F calls G. G migrates, and the runtime system gives control to
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Fig. 6. Simplified Spaghetti Stack — complex case

e. The frame e is not at the end of the stack; hence, when it exits, a pointer is
placed at the end of its frame marking it as garbage. The exit for d is similar.
When G resumes execution and exits, its frame is deactivated. Since it is at the



end of the stack, the list of garbage frames will be followed until a null pointer
is reached (in the frame labelled F), thus deallocating all of the garbage frames.

The overhead resulting from our simplified spaghetti stacks is minimal. One
extra instruction is required on entry to store zero at splink. The expected exit
path (topmost frame, with live frame underneath), requires four additional in-
structions (an add, load, and two conditional branch instructions) over the basic
stack exit code for the 1860.

There i1s one problem with the scheme that we have proposed. Since the sim-
plified spaghetti stack scheme does not deallocate dead frames immediately, we
cannot give a bound for how the size of the simplified spaghetti stack in terms of
the number of live frames. In certain degenerate communication patterns, there
is no bound. For example, in the case where p threads numbered [1..p] alternately
migrate between Processor 0 and Processor p, the stack size on Processor 0 is
bounded only by the number of migrations. In our experience, it has not been
necessary or desirable for programs to have this property. However, we must be
able to detect and correct this problem should it arise. It suffices to check the
stack explicitly in the runtime system because dead frames that are not deallo-
cated can only be generated by calls to the runtime system. A metric based on
fragmentation of the stack or one based on the remaining capacity of the stack
can be used to determine when the stack needs to be compacted. The cost of
the checks is minimal. Our prototype implementation does not check for stack
overflow.

6 Results

This section describes out early experiments with our prototype implementation
of Olden. We report results for four benchmarks: TreeAdd, Bitonic Sort, Barnes-
Hut, and Voronoi Diagram. For each benchmark, the speedups are reported with
respect to an implementation that was compiled using our compiler, but without
the overhead of futures, pointer testing, or the spaghetti stack. We refer to this
as the plain implementation. The speedup curves include a data point for one
processor. This implementation, which we refer to as one, includes the cost of
futures, pointer testing, and spaghetti stacks.

The benchmarks were hand-annotated to include future calls and touches.
The programs were annotated aggressively. Our goal is to show that the exe-
cution model is not a barrier to efficient parallelization. We do not claim that
all of the annotations can be generated automatically using existing compiler
technology.

6.1 TreeAdd

Figure 7 shows the speedup for running TreeAdd on a 1,048,575 node tree. The
speedup is not as large as one might hope because there is very little work
over which to amortize the overhead of futures, pointer tests, and the spaghetti
stack. The second curve represents the speedup using one rather than plain
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Fig.7. TreeAdd speedup

as the baseline. This curve demonstrates that the execution model can exploit
parallelism. The problem for this benchmark is that there is not enough real work
to amortize the overhead of the system. The difference between plain and one is
mostly attributable to the overhead of futurecalls. This is the only benchmark
in which futurecalls represent the dominant factor in the overhead.

6.2 Bitonic Sort

The bitonic sort benchmark[BN89] allocates a random tree and performs two
bitonic sorts: one forward and one backward. The benchmark has been modified
to maintain data locality across the processors. We report speedup only for the
sorting phases to avoid having the easily parallelizable build phase skew the re-
sults. Figure 8 contains four curves: two runs of the original implementation and
two runs of an improved implementation. The original implementation, which
does quite respectably on a medium sized problem (128K numbers), performs
an unnecessary malloc for each recursive sort, thereby artificially increasing the
amount of work per call. The improved Bitonic Sort, which removed this extra
call; still displays parallelism but not nearly as much as the original version.

The difference between plain and one is substantial for this benchmark. The
overhead from futures, pointer tests, and the spaghetti stack causes a .75 slow-
down. Seventy-five percent of this overhead is attributable to pointer tests.
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Fig. 8. Bitonic Sort speedup

6.3 Building Voronoi Diagrams

The Voronoi Diagram benchmark[GS85, L.S80] generates a random set of points
and computes a Voronoi Diagram for these points. To compute a Voronoi dia-
gram, the algorithm splits the point set into two sets using the median point as
the dividing line, it recursively computes the Voronoi Diagrams of the smaller
sets, and merges them to form the final result. The merge phase is sequential
and may require a linear number of migrations when the subsets are on different
processors. In Figure 9, we report the speedup obtained for building the Voronoi
Diagram for 64K points. The reported speedup does not include the cost of gen-
erating the points or building the tree used to represent the sets of points. This
example displays almost no parallelism for two reasons. First, the merge phase
is sequential and represents a substantial fraction of the computation. But more
importantly, migrations are expensive in our current implementation because
the speed of message passing is not well matched to the speed of the processor.
As in Bitonic Sort, we suffer from a significant slowdown in going from plain
to one (.68), which is attributable to the cost of testing for non-local pointers.

6.4 Barnes Hut

The Barnes Hut benchmark[BH8&6] simulates the motion of particles in space
using an O(nlogn) algorithm for computing the accelerations of the particles.
This is a classic n-body problem. We report the cost of generating the points
using a uniform distribution and computing the new acceleration and position
for each particle for ten time steps. The results for this benchmark, shown in
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Figure 10, are encouraging. For a relatively small problem (4K particles), we
achieve a speedup of almost eight for 16 processors. This computation is broken
into three pieces: building the tree used to represent the particles, the accelera-
tion calculation, and computing the new positions of the particles. The second
two pieces perform quite well, in part, because we build a copy of the tree of
every processor. This will not work for larger problem sizes. The tree building
is sequential and starts to represent a substantial amount of the computation as
the number of processors increases. Another factor is the cost of transmitting
the particle and acceleration information to the processors. This cost increases
as the number of processors increases.

6.5 Discussion

In our current implementations, migrations are expensive. Sending the data ac-
counts for roughly ninety percent of the cost of a migration. We believe that
by switching a machine with a better communication system, we will see a sub-
stantial improvement in the results for the Bitonic Sort and Voronoi Diagram
benchmarks. We expect to see a less dramatic improvement in Barnes-Hut.

In early experiments, we observed super-linear speedup for several of these
benchmarks. We traced this to the quadratic behavior of the i860’s memory
allocation routines. We reduced the effect of this problem by calling malloc only
a few times and managing the acquired storage explicitly.

Both the Voronoi Diagram and Bitonic Sort benchmarks suffer from substan-
tial overhead due to pointer testing. It may be possible to reduce this overhead
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pointers by using the address translation hardware and a user-level trap handler
to detect and manage non-local references. The effectiveness of such a scheme
will depend heavily on the cost of servicing a user-level trap[AT91].

7 Conclusions

We have presented a new approach for generating SPMD parallel programs au-
tomatically from sequential programs that use hierarchical data structures. In
developing our new approach, we have noted fundamental problems with trying
to apply runtime resolution techniques, currently used to produce SPMD pro-
grams for scientific programs, to programs that use dynamic data structures.
In the case of scientific programs, the array data structures are statically allo-
cated, statically mapped, and directly addressable. Dynamic data structures, on
the other hand, are dynamically allocated, dynamically mapped, and must be
recursively traversed to be addressable. These properties of dynamic data struc-
tures preclude the use of simple local tests for ownership, and therefore make
the runtime resolution model ineffective.

Our mechanism avoids these fundamental problems, by more closely match-
ing the dynamic nature of the data structures. Rather than making each proces-
sor decide if it should execute a statement by determining if it owns the relevant
piece of the data structure, we use a thread migration strategy that migrates the
computation to the processor that owns the data automatically. Coupled with
the thread migration technique is our futurecall mechanism, which introduces
parallelism by allowing processors to split the thread of computation.



In order to illustrate how a compiler can make use of the thread migration
and lazy future mechanisms, we also outlined a strategy to parallelize divide-
and-conquer type programs. This compilation method relies heavily on accurate
alias and dependency analysis for hierarchical dynamic data structures.

We have implemented our mechanism for the iPSC/860, and have used this
system to run some example programs. Our results are encouraging, especially in
light of the poor message-passing performance of the iPSC/860, and we believe
that our model can achieve substantially better results on a machine with better
communication. Qur experiences also point out the importance of merging re-
sults computed on different processors to the performance of divide-and-conquer
programs. We plan to focus on this issue as part of our continuing research.
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A Allocation Example

/* Allocate a tree with level levels on processors
lo..lo+num_proc-1 */

tree_t *TreeAlloc (int level, int lo, int num_proc)

{

if (level == 0)
return NULL;
else {
struct tree *new, *right;

int

mid, lo_tmp;

future_cell fleft;

new

= (struct tree *) ALLOC(lo, sizeof(tree_t));

fleft = futurecall(TreeAlloc, level-1, lo+num_proc/2, num_proc/2);
right=TreeAlloc(level-1,1lo0,num_proc/2);

new
new
new

->val = 1;
->right = (struct tree *) right;
->left = (struct tree *) touch(fleft);

return new;

This article was processed using the IATpX macro package with LLNCS style



